题目内容
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E、F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE、PF分别交AC于点G、H.
(1)求△PEF的边长;
(2)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有什么数量关系?并证明你猜想的结论.
(1)求△PEF的边长;
(2)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有什么数量关系?并证明你猜想的结论.
(1)2(2),证明见解析
解: (1)过作于
矩形
,即,又
………………1分
是等边三角形
在中
的边长为. ……………………………3分
与的数量关系是:………4分
在中,
…………………………………5分
是等边三角形
……………………………6分
…………………………………………8分
……………………………………………9分
(1)要求△PEF的边长,需构造直角三角形,那么就过P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的边长;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度数,再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化简即可.
矩形
,即,又
………………1分
是等边三角形
在中
的边长为. ……………………………3分
与的数量关系是:………4分
在中,
…………………………………5分
是等边三角形
……………………………6分
…………………………………………8分
……………………………………………9分
(1)要求△PEF的边长,需构造直角三角形,那么就过P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的边长;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度数,再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化简即可.
练习册系列答案
相关题目