题目内容

如图,在梯形ABCD中,AD // BC,∠ABC = 90°,AB = 4,AD = 3,BC = 5,点M是边CD的中点,联结AMBM

求:(1)△ABM的面积;
(2)∠MBC的正弦值.
(1)8(2)
(1)延长AM交BC的延长线于点N,
∵AD∥BC,
∴∠DAM=∠N,∠D=∠MCN,
∵点M是边CD的中点,
∴DM=CM,
∴△ADM≌△NCM(AAS),
∴CN=AD=3,AM=MN=AN,
∴BN=BC+CN=5+3=8,
∵∠ABC=90°,
∴SABN=×AB•BN=×4×8=16,
∴SABM=SABN=8;
∴△ABM的面积为8;………………………………4分
(2)过点M作MK⊥BC,
∵∠ABC=90°,
∴MK∥AB,
∴△NMK∽△NAB,

∴MK=AB=2,
在Rt△ABN中,AN===4
∴BM=AN=2
在Rt△BKM中,sin∠MBC==
∴∠MBC的正弦值为.………………………………4分
(1)首先作辅助线:延长AM交BC的延长线于点N,然后利用梯形的性质,即可证得△ADM≌△NCM(AAS),根据全等三角形的性质,即可求得CN的长,即可求得Rt△ABN的面积,则可求得△ABM的面积;
(2)作辅助线:过点M作MK⊥BC,构造Rt△BKM,即可求得∠MBC的正弦值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网