题目内容
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b= ,
(2)补全频数分布直方图;
(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
【答案】
(1)60;0.15
(2)
(3)解:优胜奖所在扇形的圆心角为0.30×360°=108°
(4)解:列表:甲乙丙丁分别用ABCD表示,
A | B | C | D | |
A | AB | AC | AD | |
B | BA | BC | BD | |
C | CA | CB | CD | |
D | DA | DB | DC |
∵共有12种等可能的结果,恰好选中A、B的有2种,
画树状图如下:
∴P(选中A、B)= = .
【解析】解:(1)样本总数为10÷0.05=200人, a=200﹣10﹣20﹣30﹣80=60人,
b=30÷200=0.15,
故答案为60,0.15;
(1)根据公式频率=频数÷样本总数,求得样本总数,再根据公式得出a,b的值即可;(3)根据公式优胜奖对应的扇形圆心角的度数=优胜奖的频率×360°计算即可;(4)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
【题目】小明用下面的方法求出方程2 ﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 | 换元法得新方程 | 解新方程 | 检验 | 求原方程的解 |
2 ﹣3=0 | 令 =t,则2t﹣3=0 | t= | t= >0 | = ,所以x= |
x﹣2 +1=0 | ||||
x+2+ =0 |