题目内容
【题目】2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)将上面的条形统计图补充完整;
(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人?
(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.
【答案】
(1)
解:被调查的学生总人数:150÷15%=1000(人),
选择B的人数:1000×(1-15%-20%-40%-5%)=1000×20%=200(人);
补全统计图如图所示.
(2)
解:32000×40%=12800(人).
(3)
解:根据题意画出如下树形图:
所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,
同时选择B和D的有2种可能,即BD和DB,
P(同时选择B和D)= .
【解析】(1)根据选A的有150人,占调查人数的15%,则可求出调查总人数,先求出B所占的百分比,再由调查总人数×选B的百分比,求出选B的人数;(2)选半场运球的占40%,乘以总人数,即可求得;(3)列出所有等可能的结果数,再找出“同时选择B和D”的情况数量,则可求得.
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b= ,
(2)补全频数分布直方图;
(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
【题目】某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
甲 | 乙 | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(毛利润=(售价 进价)×销售量)
(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?
【题目】为了创建书香校园,切实引导学生多读书,读好书.某中学开展了“好书伴我成长”的读书节活动,为了了解本校学生每周课外阅读时间,随机抽取部分学生进行问卷调查,将课外阅读时间分为A、B、C、D四组,并利用臭氧所得的数据绘制了如下统计图.
组别 | 课外阅读t(单位:时) |
A | X<2 |
B | 2≤x<3 |
C | 3≤x<4 |
D | x≥4 |
请根据图中提供的信息,解答下列问题:
(1)一共调查了名学生;
(2)扇形统计图中A组的圆心角度数;
(3)直接补全条形统计图
(4)若该校有2400名学生,根据你所调查的结果,估计每周课外阅读时间不足3小时的学生有多少人?