题目内容
【题目】已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P( ,n),Q(4,m)两点,且tan∠BOP= :
(1)求反比例函数和直线的函数表达式;
(2)求△OPQ的面积.
【答案】
(1)解:过P作PC⊥y轴于C,
∵P( ,n),
∴OC=n,PC= ,
∵tan∠BOP= ,
∴n=8,
∴P( ,8),
设反比例函数的解析式为y= ,
∴a=4,
∴反比例函数的解析式为y= ,
∴Q(4,1),
把P( ,8),Q(4,1)代入y=kx+b中得 ,
∴ ,
∴直线的函数表达式为y=﹣2x+9
(2)解:过Q作OD⊥y轴于D,
则S△POQ=S四边形PCDQ= ( +4)×(8﹣1)= .
【解析】(1)过P作PC⊥y轴于C,由P( ,n),得到OC=n,PC= ,根据三角函数的定义得到P( ,8),于是得到反比例函数的解析式为y= ,Q(4,1),解方程组即可得到直线的函数表达式为y=﹣2x+9;(2)过Q作OD⊥y轴于D,于是得到S△POQ=S四边形PCDQ= .
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b= ,
(2)补全频数分布直方图;
(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.