题目内容
【题目】已知,,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧;
(1)保持不动,将绕点O旋转至如图2所示的位置,则①= ;②= ;
(2)若按每分钟的速度绕点O逆时针方向旋转,按每分钟的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算(用t的代数式表示)。
(3)保持不动,将绕点O逆时针方向旋转,若射线OE平分,射线OF平分,求的大小;
【答案】(1)①150°;②30°;(2) 8t-60或2t+60;(3) ∠EOF的大小为15°或165°.
【解析】
(1)①根据∠AOB及∠COD的度数求出∠AOB+∠COD的度数,然后利用角与角之间的关系进行代换化简即可;
②根据∠AOB及∠COD的度数求出∠AOB-∠COD的度数,然后利用角与角之间的关系进行代换化简即可;
(2)分情况讨论:OD与OA相遇前及OD与OA相遇后,画出图形,再根据角与角之间的关系进行计算即可;
(3)分情况讨论,根据角与角之间的关系进行计算即可.
解:(1)①∵∠AOB=90°,∠COD=60°,
∴∠AOB+∠COD=90°+60°=150°,
∵∠AOB=∠AOC+∠BOC,∠COD=∠AOC+∠AOD,
∴∠AOC+∠BOC+∠AOC+∠AOD=150°,
∴∠AOC+∠BOD=150°;
②∵∠AOB=90°,∠COD=60°,
∴∠AOB-∠COD=90°-60°=30°,
∵∠AOB=∠AOC+∠BOC,∠COD=∠AOC+∠AOD,
∴∠AOC+∠BOC-(∠AOC+∠AOD)=30°,
∴∠BOC-∠AOD=30°;
(2)设运动时间为t秒,由题意可知:0<t≤36,∠MOC=5t,∠MOA=2t,
当OD与OA相遇时,5t-2t=60,解得:t=20,
∴经过20秒,OD与OA相遇,
①0<t≤20时,OD与OA相遇前,如图所示,
∠AOD=∠COD+∠AOM-∠MOC=60+2t-5t=60-3t,
∴∠MOC-∠AOD=5t-(60-3t)=8t-60;
②20<t≤36时,OD与OA相遇后,如图所示,
∠AOD=∠MOC-∠COD-∠AOM=5t-60-2t=3t-60,
∴∠MOC-∠AOD=5t-(3t-60)=2t+60;
(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,
①0<n°≤150°时,射线OE、OF在射线OB同侧,在直线MN同侧,
∵∠BOD=150°-n°,∠AOC=n°,OE平分∠AOC,OF平分∠BOD,
∴∠BOF=(150°-n°),∠BOE=90°-n°,
∴∠EOF=∠BOE-∠BOF=15°;
②150°<n°≤180°时,射线OE、OF在射线OB异侧,在直线MN同侧,
∵∠BOD= n°-150°,∠AOC=n°,OE平分∠AOC,OF平分∠BOD,
∴∠BOF=(n°-150°),∠BOE=90°-n°,
∴∠EOF=∠BOE+∠BOF=15°;
③180°<n°≤330°时,射线OE、OF在射线OB异侧,在直线MN异侧,
∵∠BOD= n°-150°,∠AOC=360°-n°,OE平分∠AOC,OF平分∠BOD,
∴∠DOF=(n°-150°),∠COE=(360°-n°),
∴∠EOF=∠DOF+∠COD+∠COE=165°;
④330°<n°≤360°时,射线OE、OF在射线OB同侧,在直线MN异侧,
∵∠BOD=360°-(n°-150°),∠AOC=360°-n°,OE平分∠AOC,OF平分∠BOD,
∴∠DOF=[360°-(n°-150°)],∠COE=(360°-n°),
∴∠EOF=∠DOF-∠COD-∠COE=15°;
综上,∠EOF的大小为15°或165°.