题目内容
【题目】如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______.
【答案】2
【解析】
根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.
连接O1B、O1C,如图:
∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,
∴∠BO1F=∠CO1G,
∵四边形ABCD是正方形,
∴∠O1BF=∠O1CG=45°,
在△O1BF和△O1CG中
∴△O1BF≌△O1CG(ASA),
∴O1、O 两个正方形阴影部分的面积是 S正方形,
同理另外两个正方形阴影部分的面积也是S正方形,
∴S阴影部分= S正方形=2.
故答案为:2.
练习册系列答案
相关题目
【题目】如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:
甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形. | 乙:分别作与的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形. |
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲错误,乙正确
C.甲、乙均正确D.甲、乙均错误