题目内容
【题目】在△ABC中,,AC=4,BC=3,点D是斜边AB的中点. 以点D为顶点作,射线DM、DN分别交边AC、CB于点E、F.
特例
(1)如图1,若,不添加辅助线,图1中所有与△ABC相似的三角形为 , ;
操作探究:
(2)将(1)中的从图1 的位置开始绕点D按逆时针方向旋转,得到.如图2,当射线分别交边于点时,求的值;
拓展延伸:
(3)如图3,中,,AC=m,BC=n,点D是斜边AB的中点,以点D为顶点作,射线分别交边的延长线于点,则的值为_______________.(用含的代数式表示,直接回答即可)
【答案】(1),,;(2);(3)
【解析】
(1)证得四边形DECF为矩形,则DF∥AC,则,,又根据三角形中位线的性质,即可求得的值;
(2)由旋转可知∠∠,可证得,由(1)的结论可求得答案;
(3)作DG⊥AC于G,DH⊥BC于H,利用三角形中位线定理求得,,再证得,即可求解.
(1)∵DE∥BC,∠ACB=∠EDF=,
∴四边形DECF为矩形,
∴DF∥AC,
∴,;
∵点D是斜边AB的中点,
∴,,
∴,
故答案为:,,;
(2)由旋转可知:∠∠,且∠∠,
∴,
∴,
由(1)得,
∴;
(3)作DG⊥AC于G,DH⊥BC于H,
∵点D是斜边AB的中点,
∴,,
∵DG⊥AC,DH⊥BC,∠ACB=,
∴四边形DECF为矩形,
∴∠GDH=,
又∵∠MDN=,
∴∠GDE+∠EDH=∠HDF+∠EDH=,
∴∠GDE=∠HDF,
又∵∠DGE=∠DHF=,
∴,
∴.
练习册系列答案
相关题目