题目内容

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有   人,扇形统计图中了解部分所对应扇形的圆心角为   °;

(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到了解基本了解程度的总人数为  人;

(3)若从对校园安全知识达到了解程度的3个女生A、B、C2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.

【答案】(1)60,30;;(2)300;(3)

【解析】

(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;

(2)利用样本估计总体的方法,即可求得答案;

(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.

解:(1)∵了解很少的有30人,占50%,

接受问卷调查的学生共有:30÷50%=60(人);

了解部分的人数为60﹣(15+30+10)=5,

扇形统计图中了解部分所对应扇形的圆心角为:×360°=30°;

故答案为:60,30;

(2)根据题意得:900×=300(人),

则估计该中学学生中对校园安全知识达到了解基本了解程度的总人数为300人,

故答案为:300;

(3)画树状图如下:

所有等可能的情况有6种,其中抽到女生A的情况有2种,

所以P(抽到女生A)==

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网