题目内容
【题目】 如图,先将正方形纸片对折,折痕为MN,再把点B折叠在折痕MN上,折痕为AE,点E在CB上,点B在MN上的对应点为H,连接DH,则下列选项错误的是( )
A.△ADH是等边三角形B.NE=BC
C.∠BAE=15°D.∠MAH+∠NEH=90°
【答案】B
【解析】
依据折叠的性质以及正方形的性质,得到△ADH是等边三角形;依据AM=AD=AH,得到∠AHM=30°,进而得出∠BAE=15°;依据∠AHE=∠B=90°,∠AMH=∠ENH=90°,即可得到∠MAH+∠NEH=90°.
由折叠可得,MN垂直平分AD,AB=AH,
∴DH=AH=AB=AD,
∴△ADH是等边三角形,故A选项正确;
∵BE=HE>NE,
∴BE>BN,
∴NE=BC不成立,故B选项错误;
由折叠可得,AM=AD=AH,
∴∠AHM=30°,∠HAM=60°,
又∵∠BAD=90°,
∴∠BAH=30°,
由折叠可得,∠BAE=∠BAH=15°,故C选项正确;
由折叠可得,∠AHE=∠B=90°,
又∵∠AMH=90°,
∴∠AHM+∠HAM=90°,∠AHM+∠EHN=90°,
∴∠HAM=∠EHN,
同理可得∠NEH+∠AHM,
∴∠MAH+∠NEH=90°,故D选项正确;
故选:B.
练习册系列答案
相关题目