题目内容
【题目】如图,在平面直角坐标系中,菱形的顶点为坐标原点,且与反比例函数的图象相交于,两点,且点的纵坐标为,已知点,则的值为( ).
A.B.C.9D.
【答案】D
【解析】
作AE⊥x轴交x轴于点E,作CF⊥x轴交x轴于点F,作BD∥x轴交AE于点D,证明△ADB≌△CFO,求出AD=CF=,同理证明△AEO≌△OFC,求出OF=AE=,得到点C坐标即可解决问题.
解:作AE⊥x轴交x轴于点E,作CF⊥x轴交x轴于点F,作BD∥x轴交AE于点D,
∵四边形AOCB是菱形,
∴AB∥CO,AB=CO,
∴∠ABO=∠COB,
又∵BD∥x轴,
∴∠DBO=∠FOB,
∴∠ABD=∠COF,
∵AD⊥BD,CF⊥OF,
∴∠ADB=∠CFO=90°,
又∵AB=CO,
∴△ADB≌△CFO(AAS),
∴AD=CF,
∵C点的纵坐标为,,
∴AD=CF=,
∴AE=,
同理可证,△AEO≌△OFC,
∴OF=AE=,
∴点C的坐标为(,),
∴k=,
故选:D.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数的图象与性质,小李根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小李探究的过程,请补充完整:
(1)函数的自变量的取值范围是______;
(2)下表是与的几组对应值:
… | 0 | 2 | 3 | 4 | 5 | … | ||||
… | 0 | 5 | 3 | 2 | … |
则的值为_______;
(3)如图所示,在平面直角坐标系中,根据描出的点,请补全此函数的图象;
(4)观察图象,写出该函数的一条性质_______;
(5)若函数的图象在函数的图象上方,直接写出的取值范围_______.