题目内容
【题目】如图,已知在四边形ABCD中∠A=∠ABC=90°,点E是CD的中点,△ABD与 △EBD关于直线BD对称,,.
(1)求点A和点E之间的距离;
(2)联结AC交BE于点F,求的值.
【答案】(1) AE= ;(2)
【解析】
(1)连接AE交BD于H,根据△ABD与 △EBD关于直线BD对称, 得AE⊥BD,AH=HE,利用勾股定理求出BD=2,利用求出即可得到答案;
(2)根据∠A=90°,, BD=2求出∠ABD=30°,由△ABD与 △EBD关于直线BD对称,得到∠BED=∠A=90°,DE=AD=1,∠DBE=∠ABD=30°,由点E是CD的中点,求出BC=BD=2,∠CBE=∠DBE=30°,求出∠M =30°,AM=3,利用AM∥BC,,即可求出.
(1)连接AE交BD于H,
∵△ABD与 △EBD关于直线BD对称,
∴AE⊥BD,AH=HE,
∵∠A=90°,,,
∴BD=2,
∵,
∴,
∴,
∴AE=;
(2)延长AD、BE交于点M,∵∠A=90°,, BD=2,
∴sin∠ABD=,
∴∠ABD=30°,
∵△ABD与 △EBD关于直线BD对称,
∴∠BED=∠A=90°,DE=AD=1,∠DBE=∠ABD=30°,
∵点E是CD的中点,
∴BE垂直平分CD,
∴BC=BD=2,
∴∠CBE=∠DBE=30°,
∵∠A=∠ABC=90°,
∴AD∥BC,
∴∠M=∠CBE=30°,
∴AM=,
∵AM∥BC,
∴,
∴.
【题目】某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量(本) | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
【题目】河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:
(1)(收集数据)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是________.
①在九年级学生中随机抽取36名学生的成绩;
②按男、女各随机抽取18名学生的成绩;
③按班级在每个班各随机抽取4名学生的成绩.
(2)(整理数据)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:
成绩(单位:分) | 频数 | 频率 |
A类(80~100) | 18 | |
B类(60~79) | 9 | |
C类(40~59) | 6 | |
D类(0~39) | 3 |
①C类和D类部分的圆心角度数分别为________°、________°;
②估计九年级A、B类学生一共有________名.
(3)(分析数据)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:
学校 | 平均数(分) | 极差(分) | 方差 | A、B类的频率和 |
河西中学 | 71 | 52 | 432 | 0.75 |
复兴中学 | 71 | 80 | 497 | 0.82 |
你认为哪所学校本次测试成绩较好,请说明理由.