题目内容
【题目】如图,ΔABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数。
①若∠ABC=40°,∠ACB=60°,则∠BIC=______°;
②若∠ABC+∠ACB=100°,则∠BIC=___________°;
③若∠A=80°,则∠BIC=_______°;
④从上述计算中,我们能发现已知∠A=x,则∠BIC=_______°.
【答案】①130;②130;③130;④90°+.
【解析】
①由∠ABC=40°,∠ACB=60°,∠ABC与∠ACB的平分线交于点I,可求∠IBC、∠ICB的度数,再利用三角形内角和定理求∠BIC;
②由∠ABC+∠ACB=100°,∠ABC与∠ACB的平分线交于点I,可求∠IBC+∠ICB的度数,再利用三角形内角和定理求∠BIC;
③由∠A=80°可得∠ABC+∠ACB=100°,∠ABC与∠ACB的平分线交于点I,可求∠IBC+∠ICB的度数,再利用三角形内角和定理求∠BIC;
④由三角形内角和定理得∠ABC+∠ACB=180°﹣∠A,∠ABC与∠ACB的平分线交于点I,则∠IBC+∠ICB(180°﹣∠A).在△IBC中,利用三角形内角和定理求∠BIC.
①∵∠ABC=40°,∠ACB=60°,∠ABC与∠ACB的平分线交于点I,∴∠IBC=20°∠ICB=30°,∴∠BIC=180°﹣∠IBC﹣∠ICB=130°;
②∵∠ABC+∠ACB=100°,∠ABC与∠ACB的平分线交于点I,∴∠IBC+∠ICB(∠ABC+∠ACB)=50°,∴∠BIC=180°﹣(∠IBC+∠ICB)=130°;
③∵∠A=80°,∴∠ABC+∠ACB=100°.
又∵∠ABC与∠ACB的平分线交于点I,∴∠IBC+∠ICB(∠ABC+∠ACB)=50°,∴∠BIC=180°﹣(∠IBC+∠ICB)=130°;
④∠BIC=90°x.理由如下:
在△ABC中,∠ABC+∠ACB=180°﹣∠A.
∵BI、CI是△ABC内角的平分线,∴∠IBC∠ABC,∠ICB∠ACB,∴∠IBC+∠ICB∠ABC∠ACB(∠ABC+∠ACB)(180°﹣∠A).
在△IBC中,∠BIC=180°﹣(∠IBC+∠ICB)=180°(180°﹣∠A)=90°∠A.
即:∠BIC=90°x.
【题目】三台县某中学“五四”青年节举行了“班班有歌声”歌咏比赛活动比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.
老师评委评分统计表:
评委序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
分数 | 94 | 96 | 93 | 91 | x | 92 | 91 | 98 | 96 | 93 |
学生评委评分折线统计图师生评委评分频数分布直方图
补全频数分布直方图.
学生评委评分的中位数是______.
计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占、的方法计算各班最后得分,知甲班最后得分分,试求统计表中的x.