题目内容
【题目】在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)求二次函数的表达式;
(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;
(3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.
【答案】(1);(2);(3)6
【解析】
(1)先求出B、C的坐标,然后代入二次函数的解析式,解方程组即可;
(2)过D作DG⊥x轴于G,过C作CF⊥DG于F,过B作BE⊥CF于E.设D(x,y),则x>0,y<0.求出S△ABC.根据S△CBD=S△CDF-S△CEB-S梯形EBDF解方程解得到x的值,从而得到D的坐标;
(3)连接AD,过D作DM⊥x轴于M.先求出直线CD的解析式为y=-x+2,得到CO=OR=2,则∠ORC=45°.再证明∠AQD=45°.通过勾股定理的逆定理得到AC2+AD2= DC2,即有∠CAD=90°,从而有△AQD是等腰直角三角形,由等腰三角形的性质得到AQ=AD.通过证明△QAN≌△ADM,得到NA,QN的长,进而得到ON=4,即可得到N(-4,0),则P点横坐标为x=-4,代入二次函数即可得到y的值,从而得到结论.
(1)在中,令y=0,解得:x=4,∴B(4,0),令x=0,得:y=2,∴C(0,2).把B(4,0),C(0,2)代入中,得:,解得:,∴二次函数的表达式为:.
(2)过D作DG⊥x轴于G,过C作CF⊥DG于F,过B作BE⊥CF于E.设D(x,y).
∵D在第四象限,∴x>0,y<0.
∵B(4,0),C(0,2),∴CE=OB=4,CO=BE=FG=2,EF=BG=x-4,DF=DG+FG=2-y,S△ABC=AB×OC=×(4+1)×2=5.
S△CBD=S△CDF-S△CEB-S梯形EBDF=,化简得:x+2y=-1.
∵D(x,y)在二次函数上,∴,化简得:,∴(x-5)(x+1)=0,∴x=5或x=-1(舍去).
当x=5时,y==-3,∴D(5,-3).
(3)如图,连接AD,过D作DM⊥x轴于M.设直线CD的解析式为y=kx+b,把C(0,2),D(5,-3)代入得到:,解得:,∴直线CD的解析式为y=-x+2,令y=0,解得:x=2,∴R(2,0),∴CO=OR=2,∴∠ORC=45°.
∵∠ACO+∠CAO=90°,∠CAO+∠OAD=90°,∴∠ACO=∠OAD,∴∠ACO+∠ADC=∠OAD+∠ADC=∠ARC=45°,∴∠AQD=45°.
∵AC2=12+22=5,AD2=(5+1)2+32=45,DC2=52+(2+3)2=50,∴AC2+AD2=5+45=50= DC2,∴∠CAD=90°,∴∠QAD=90°.
∵∠AQD=45°,∴△AQD是等腰直角三角形,∴AQ=AD.
∵∠QAD=90°,∴∠NAQ+∠DAM=90°.
∵∠NAQ+∠AQN=90°,∴∠AQN=∠MAD.在△QAN和△ADM中,∵∠AQN=∠MAD,∠QNA=∠AMD=90°,AQ=AD,∴△QAN≌△ADM,∴NA=DM=3,QN=AM=6,∴ON=4,∴N(-4,0).设P(x,y).
∵QP∥y轴,∴P点横坐标为x=-4,∴y==-12,∴PN=12,∴PQ=PN-QN=12-6=6.