题目内容
如图,△ABC中,AB=AC,AD交BC边于点M,BD=
AC,∠BAC=∠ABD=120°,则BM:MC的值是______;作△ABC的中线CF交AM于G,则CG:GF的值是______.

1 |
2 |

过点A作AE⊥BC于E.
∵AB=AC,∠BAC=120°,
∴BE=CE,∠C=∠ABC=30°.
设BD=k,则AB=AC=2k.
在△BDM中,∠DBM=∠ABD-∠ABM=120°-30°=90°.
在△ABE中,∵∠AEB=90°,∠ABE=30°,AB=2k,
∴AE=k.
在△AME与△DMB中,
∵
,
∴△AME≌△DMB(AAS),
∴EM=BM,
∵CE=BE=BM+EM=2BM,
∴MC=EM+CE=3BM,
∴BM:MC=BM:3BM=
;
如图,作△ABC的中线CF交AM于G,设CF与AE交于点H,连接FM.
∵EM=BM,AF=BF,
∴FM∥BD,FM=
BD=
k.
∵AE∥BD,
∴FM∥AE,
∴
=
=2,
=
=
,
∴CH=2HF,HE=
FM=
×
k=
k,
∴AH=AE-HE=k-
k=
k.
∵
=
=
=
,
令HG=4t,则GF=3t,HF=7t,CH=14t,
∴CG=CH+HG=18t,
∴CG:GF=18t:3t=6.
故答案为
;6.

∵AB=AC,∠BAC=120°,
∴BE=CE,∠C=∠ABC=30°.
设BD=k,则AB=AC=2k.
在△BDM中,∠DBM=∠ABD-∠ABM=120°-30°=90°.
在△ABE中,∵∠AEB=90°,∠ABE=30°,AB=2k,
∴AE=k.
在△AME与△DMB中,
∵
|
∴△AME≌△DMB(AAS),
∴EM=BM,
∵CE=BE=BM+EM=2BM,
∴MC=EM+CE=3BM,
∴BM:MC=BM:3BM=
1 |
3 |

∵EM=BM,AF=BF,
∴FM∥BD,FM=
1 |
2 |
1 |
2 |
∵AE∥BD,
∴FM∥AE,
∴
CH |
HF |
CE |
EM |
HE |
FM |
CE |
CM |
2 |
3 |
∴CH=2HF,HE=
2 |
3 |
2 |
3 |
1 |
2 |
1 |
3 |
∴AH=AE-HE=k-
1 |
3 |
2 |
3 |
∵
HG |
GF |
AH |
FM |
| ||
|
4 |
3 |
令HG=4t,则GF=3t,HF=7t,CH=14t,
∴CG=CH+HG=18t,
∴CG:GF=18t:3t=6.
故答案为
1 |
3 |


练习册系列答案
相关题目