题目内容
【题目】如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.
(1)M、N同时运动几秒后,M、N两点重合?
(2)M、N同时运动几秒后,可得等边三角形△AMN?
(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?
【答案】(1)10秒;(2)秒;(3)秒.
【解析】
(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多10cm,列出方程求解即可;
(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;
(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB的长,列出方程,可解出未知数的
(1)设点M、N运动x秒后,M、N两点重合,
x+10=2x,解得x=10;
(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,
AM=t,AN=AB–BN=10–2t,
∵三角形△AMN是等边三角形,
∴t=10–2t,解得t=,
∴点M、N运动秒后,可得到等边三角形△AMN.
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,
由(1)知10秒时M、N两点重合,恰好在点C处,
如图②,假设△AMN是等腰三角形,
∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,
∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,
在△ACM和△ABN中,
∵,
∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间为y秒时,△AMN是等腰三角形,
∴CM=y–10,NB=30–2y,CM=NB,
y–10=30–2y,
解得:y=.故假设成立.
∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.