题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为______.
【答案】3﹣或2
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=2,
又∵Rt△ABC中,AB=2BC=4,
∴AE=2,
设AD=A'D=x,则DE=2﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(2﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=2BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=2DE,即x=2(3﹣x),
解得x=2,
即AD的长为2;
综上所述,即AD的长为3﹣或2.
故答案为:3﹣或2.
练习册系列答案
相关题目