题目内容
【题目】如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)
【答案】米.
【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.
试题解析:作AE⊥PQ于E,CF⊥MN于F.
∵PQ∥MN,
∴四边形AECF为矩形,
∴EC=AF,AE=CF.
设这条河宽为x米,
∴AE=CF=x.
在Rt△AED中,
∵PQ∥MN,
∴在Rt△BCF中,
∵EC=ED+CD,AF=AB+BF,
解得
∴这条河的宽为米.
练习册系列答案
相关题目