题目内容
【题目】如图,在等腰三角形ABC中,∠A=90°,D是BC边的中点.
(1)若E在直角边AB上运动,F在直角边AC上运动,在运动过程中始终保持BE=AF.则△EDF_____是三角形.
(2)在(1)的条件下,四边形AEDF的面积是否发生变化?若不变化,请直接写出当AB=4时,四边形AEDF的面积;若变化,请说明理由.
(3)若E,F分别为AB,CA延长线上的点,且BE=AF,其他条件不变,那么(1)中的结论是否还成立?画图并证明你的结论.
【答案】(1)等腰直角;(2)四边形AEDF面积不变;(3)成立,证明见解析.
【解析】
(1)题要通过构建全等三角形来求解.连接AD,可通过证△ADF和△BDE全等来求本题的结论.
(2)题可把将四边形AEDF的面积分成△ADF和ADE的面积和求解,由(1)证得△ADF和△BDE全等,因此四边形AEDF的面积可转化为△ABD的面积,由此得证.
(3)与(1)题的思路和解法一样.
(1)证明:如图1中,连接AD.
∵AB=AC,∠A=90°,D为BC中点
∴AD==BD=CD
且AD平分∠BAC
∴∠BAD=∠CAD=45°
在△BDE和△ADF中, ,
∴△BDE≌△ADF(SAS)
∴DE=DF,∠BDE=∠ADF
∵∠BDE+∠ADE=90°
∴∠ADF+∠ADE=90°
即:∠EDF=90°
∴△EDF为等腰直角三角形.
故答案为等腰直角.
(2)解:四边形AEDF面积不变.
理由:∵由(1)可知,△AFD≌△BED,
∴S△BDE=S△ADF,
而S四边形AEDF=S△AED+S△ADF=S△AED+S△BDE=S△ABD
∴S四边形AEDF不会发生变化.
(3)解:仍为等腰直角三角形.
理由:如图2中,连接AD.
∵△AFD≌△BED,
∴DF=DE,∠ADF=∠BDE,
∵∠ADF+∠FDB=90°,
∴∠BDE+∠FDB=90°,
即:∠EDF=90°,
∴△EDF为等腰直角三角形.