题目内容

【题目】1)问题背景:如图1,在四边形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°EF分别是BCCD上的点,且∠EAF60°,请探究图中线段BEEFFD之间的数量关系是什么?

小明探究此问题的方法是:延长FD到点G,使DGBE,连结AG.先证明ABE≌△ADG,得AEAG;再由条件可得∠EAF=∠GAF,证明AEF≌△AGF,进而可得线段BEEFFD之间的数量关系是   

2)拓展应用:

如图2,在四边形ABCD中,ABAD,∠B+D180°EF分别是BCCD上的点,且∠EAFBAD.问(1)中的线段BEEFFD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.

【答案】1EFBE+DF;(2)结论EFBE+DF仍然成立;证明见解析.

【解析】

1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;

2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.

1EFBE+DF

理由如下:

在△ABE和△ADG中,

∴△ABE≌△ADGSAS),

AEAG,∠BAE=∠DAG

∵∠EAFBAD

∴∠GAF=∠DAG+DAF=∠BAE+DAF=∠BAD﹣∠EAF=∠EAF

∴∠EAF=∠GAF

在△AEF和△GAF中,

∴△AEF≌△AGFSAS),

EFFG

FGDG+DFBE+DF

EFBE+DF

故答案为:EFBE+DF

2)结论EFBE+DF仍然成立;

理由:延长FD到点G.使DGBE.连结AG,如图2

∵∠B+ADC180°,∠ADC+ADG180°

∴∠B=∠ADG

在△ABE和△ADG中,

∴△ABE≌△ADGSAS),

AEAG,∠BAE=∠DAG

∵∠EAFBAD

∴∠GAF=∠DAG+DAF=∠BAE+DAF=∠BAD﹣∠EAF=∠EAF

∴∠EAF=∠GAF

在△AEF和△GAF中,

∴△AEF≌△AGFSAS),

EFFG

FGDG+DFBE+DF

EFBE+DF

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网