题目内容

【题目】如图,在平面直角坐标系中,菱形ABCD的边ABx轴上,点B坐标(﹣3,0),点Cy轴正半轴上,且sinCBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.

(1)求点D坐标.

(2)求S关于t的函数关系式.

(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.

【答案】(1)D(5,4);(2)见解析;(3)点Q坐标为()或(4,1)或(1,﹣3).

【解析】

1)在RtBOC中,OB=3,sinCBO=,设CO=4k,BC=5k,根据BC2=CO2+OB2,可得25k2=16k2+9,推出k=1或﹣1(舍弃),求出菱形的边长即可解决问题;

(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t;②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.分别求解即可解决问题;

(3)画出符合条件的图形,分三种情形分别求解即可解决问题;

(1)在RtBOC中,OB=3,sinCBO=,设CO=4k,BC=5k,

BC2=CO2+OB2

25k2=16k2+9,

k=1或﹣1(舍去),

BC=5,OC=4,

∵四边形ABCD是菱形,

CD=BC=5,

D(5,4);

(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.

②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.

S=S梯形OCDA﹣SDQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣

(3)如图3中,①当QB=QC,BQC=90°,Q();

②当BC=CQ′,BCQ′=90°时,Q′(4,1);

③当BC=BQ″,CBQ″=90°时,Q″(1,﹣3);

综上所述,满足条件的点Q坐标为()或(4,1)或(1,﹣3).

练习册系列答案
相关题目

【题目】数学问题:计算(其中m,n都是正整数,且m2,n1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算

1次分割,把正方形的面积二等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续二等分,…;

n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

探究二:计算++++

1次分割,把正方形的面积三等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续三等分,…;

n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

两边同除以2,得++++=

探究三:计算++++

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算++++

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式:_________

所以, ++++=________

拓广应用:计算 ++++

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网