题目内容

【题目】抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.

(1)求这条抛物线的表达式;
(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,若点C在直线y2=﹣3x+t上,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n的取值范围.

【答案】
(1)解:∵抛物线与y轴交于点C,

∴C(0,﹣3).

∵抛物线与x轴交于A、B两点,OB=OC,

∴B(3,0)或B(﹣3,0).

∵点A在点B的左侧,m>0,

∴抛物线经过点B(3,0).

∴0=9m+3(m﹣3)﹣3.

∴m=1.

∴抛物线的表达式为y1=x2﹣2x﹣3


(2)解:由(1)可知:y1=x2﹣2x﹣3=(x﹣1)2﹣4,

∵点C在直线y2=﹣3x+t上,

∴t=﹣3,

∴y2=﹣3x﹣3,

y1向左平移n个单位后,则表达式为:y3=(x﹣1+n)2﹣4,

则当x≥1﹣n时,y随x增大而增大,

y2向下平移n个单位后,则表达式为:y4=﹣3x﹣3﹣n,

要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4

即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,

解得:n≥1


【解析】(1)由抛物线的解析式易求点C的坐标,进而可求出点B的坐标,把点B的坐标代入抛物线的解析式可求出m的值,则抛物线的解析式也可求出;(2)由点C在直线y2=﹣3x+t上,可知t=﹣3,若y1向左平移n个单位后,则表达式为:y3=(x﹣1+n)2﹣4,若y2向下平移n个单位后,则表达式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4 , 进而可求出n的取值范围.
【考点精析】根据题目的已知条件,利用二次函数图象的平移和抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

【题目】阅读下列材料:
根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65 岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化.从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果.所谓“老年人口抚养比”是指某范围人口中,老年人口数(65 岁及以上人口数)与劳动年龄人口数(15﹣64 岁人口数)之比,通常用百分比表示,用以表明每100 名劳动年龄人口要负担多少名老年人.
以下是根据我国近几年的人口相关数据制作的统计图和统计表.
2011﹣2014 年全国人口年龄分布图

2011﹣2014 年全国人口年龄分布表

2011年

2012年

2013年

2014年

0﹣14岁人口占总人口的百分比

16.4%

16.5%

16.4%

16.5%

15﹣64岁人口占总人口的百分比

74.5%

74.1%

73.9%

73.5%

65岁及以上人口占总人口的百分比

m

9.4%

9.7%

10.0%

根据以上材料解答下列问题:
(1)2011 年末,我国总人口约为亿,全国人口年龄分布表中m的值为
(2)若按目前我国的人口自然增长率推测,到2027 年末我国约有14.60 亿人.假设0﹣14岁人口占总人口的百分比一直稳定在16.5%,15﹣64岁人口一直稳定在10 亿,那么2027 年末我国0﹣14岁人口约为亿,“老年人口抚养比”约为;(精确到1%)
(3)2016 年1 月1 日起我国开始实施“全面二胎”政策,一对夫妻可生育两个孩子,在未来10年内,假设出生率显著提高,这(填“会”或“不会”)对我国的“老年人口抚养比”产生影响.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网