题目内容

【题目】如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.
(1)求证:EF是⊙O的切线;
(2)若DE=1,BC=2,求劣弧 的长l.

【答案】
(1)证明:连接OC,

∵OA=OC,

∴∠OAC=∠DAC,∴∠DAC=∠OCA,

∴AD∥OC,

∵∠AEC=90°,∴∠OCF=∠AEC=90°,

∴EF是⊙O的切线;


(2)解:连接OD,DC,

∵∠DAC= DOC,∠OAC= BOC,

∴∠DAC=∠OAC,

∵ED=1,DC=2,

∴sin∠ECD=

∴∠ECD=30°,

∴∠OCD=60°,

∵OC=OD,

∴△DOC是等边三角形,

∴∠BOC=∠COD=60°,OC=2,

∴l= = π.


【解析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.
【考点精析】关于本题考查的弧长计算公式,需要了解若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网