题目内容
【题目】在ABCD中,过点D作对DE⊥AB于点E,点F在边CD上,CF=AE,连结AF,BF.
(1)求证:四边形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵CF=AE,
∴BE=DF.
∴四边形BFDE为平行四边形.
∵DE⊥AB,
∴∠DEB=90°.
∴四边形BFDE是矩形
(2)证明:由(1)得,四边形BFDE是矩形,
∴∠BFD=90°.
∴∠BFC=90°,
在Rt△BFC中,由勾股定理得:BC= = =10.
∴AD=BC=10.
∵DF=10,
∴AD=DF.
∴∠DAF=∠DFA.
∵AB∥CD,
∴∠DFA=∠FAB.
∴∠DAF=∠FAB.
∴AF平分∠DAB.
即AF是∠DAB的平分线
【解析】(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DE⊥AB,即可得出结论;(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=∠DFA,再由平行线的性质即可得出结论.
【考点精析】通过灵活运用平行四边形的性质和矩形的判定方法,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.
练习册系列答案
相关题目