题目内容

【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).

(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

【答案】
(1)

解:由已知,设抛物线解析式为y=a(x﹣2)2

把D(0,﹣1)代入,得a=﹣

∴y=﹣ (x﹣2)2


(2)

解:如图1,连结BN.

∵N1,N2是N的对称点

∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC

∴∠N1BN2=2∠DBC

∵四边形ABCD是菱形

∴AB=BC,∠ABC=2∠DBC

∴∠ABC=∠N1BN2

∴△ABC∽△N1BN2


(3)

解:∵点N是CD上的动点,

∴点到直线的距离,垂线段最短,

∴当BN⊥CD时,BN最短.

∵C(2,0),D(0,﹣1)

∴CD=

∴BNmin= =

∴BN1min=BNmin=

∵△ABC∽△N1BN2

N1N2min=


(4)

解:如图2,

过点P作PE⊥x轴,交AB于点E.

∵∠PQA=∠BAC

∴PQ1∥AC

∵菱形ABCD中,C(2,0),D(0,﹣1)

∴A(﹣2,0),B(0,1)

∴lAB:y= x+1

不妨设P(m,﹣ (m﹣2)2),则E(m, m+1)

∴PE= m2 m+2

∴当m=1时,

∴P(1,﹣ ),

∴Q1(﹣ ,﹣ ).

此时,PQ1最小,最小值为 =

∴PQ1=PQ2=

设Q2(n, n+1),

∵P(1,﹣ ),

∴PQ2= =

∴n=﹣ 或n=

∴Q2 ),

∴满足条件的Q(﹣ ,﹣ )或(


【解析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE= m2 m+2函数解析式,根据抛物线的特点确定出最小值.

练习册系列答案
相关题目

【题目】根据要求完成下列题目:

(1)图中有_____块小正方体;

(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;

(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为____

【答案】(1)7;(2)画图见解析;(3)16

【解析】

(1)直接根据立体图形得出小正方体的个数;

(2)主视图从左往右小正方形的个数为1,3,2;左视图从左往右小正方形的个数为3,1;俯视图从左往右小正方形的个数1,2,1;

(3)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.

(1)图中有7块小正方体;

故答案为:7;

(2)如图所示:

(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要6个小立方块,最多要10个小立方块.则m+n=16

故答案为:16

【点睛】

此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.

型】解答
束】
24

【题目】如图,点P是∠AOB的边OA上的一点,作∠AOB的平分线ON

(1)过点POB的平行线交ON于点M

(2)过点MOB的垂线,垂足为H

(3)度量线段POPMMH的长度,会发现:线段POPM的大小关系是 线段MHPM的大小关系是

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网