题目内容
【题目】如图,在Rt△ABC中,∠ABC=90o,以BC为直径的半圆⊙O交AC于点D,点E是AB的中点,连接DE并延长,交CB延长线于点F.
(1)判断直线DF与⊙O的位置关系,并说明理由;
(2)若CF=8,DF=4,求⊙O的半径和AC的长.
【答案】(1)相切,证明见解析;(2).
【解析】
(1)连接OD,OE,证明△OBE≌△ODE,得到∠ODE=∠OBE=90°即OD⊥DE,从而得出结论;
(2)首先设⊙O半径为x,运用勾股定理得到方程,解方程可得圆的半径;证明△FBE∽△FDO,得出BE=,由点E是AB中点,得出AB的长,再由勾股定理得出AC的长.
(1)相切
证明:连接OD,OE
∵点E是AB中点,点O是BC中点
∴OE是△ABC的中位线,
∴OE∥AC
∴∠1=∠4,∠2=∠3
∵OC=OD,
∴∠3=∠4,
∴∠1=∠2
∵OB=OD,OE=OE,
∴△OBE≌△ODE
∴∠ODE=∠OBE=90o
∴OD⊥DE,
∴直线DF与⊙O相切.
(2)设⊙O半径为x,则OD=x,OF=8-x
在Rt△FOD中,,
∴,
∴x=3
∴⊙O半径为3
∵∠FBE=∠FDO=90°,∠F=∠F,
∴△FBE∽△FDO,
∴,
∵BF=FC-BC=2,OD=3,DF=4,
∴BE=,
∵点E是AB中点,
∴AB=2BE=3
在Rt△ABC中,AC==
【题目】入学考试前,某语文老师为了了解所任教的甲、乙两班学生假期向的语文基础知识背诵情况,对两个班的学生进行了语文基础知识背诵检测,满分100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理,描述和分析(成绩得分用x表示,共分为五组:
A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面给出了部分信息:
甲班20名学生的成绩为:
甲组 | 82 | 85 | 96 | 73 | 91 | 99 | 87 | 91 | 86 | 91 |
87 | 94 | 89 | 96 | 96 | 91 | 100 | 93 | 94 | 99 |
乙班20名学生的成绩在D组中的数据是:93,91,92,94,92,92,92
甲、乙两班抽取的学生成绩数据统计表
班级 | 甲组 | 乙组 |
平均数 | 91 | 92 |
中位数 | 91 | b |
众数 | c | 92 |
方差 | 41.2 | 27.3 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值:a= ;b= ;c= ;
(2)根据以上数据,你认为甲、乙两个班中哪个班的学生基础知识背诵情况较好?请说明理由(一条理由即可);
(3)若甲、乙两班总人数为125,且都参加了此次基础知识检测,估计此次检测成绩优秀(x≥95)的学生人数是多少?