题目内容

【题目】已知,AB是O的直径,点P在弧AB上(不含点A、B),把AOP沿OP对折,点A的对应点C恰好落在O上.

(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);

(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;

(3)当P、C都在AB上方时(如图3),过C点作CD直线AP于D,且CD是O的切线,证明:AB=4PD.

【答案】解:(1)PO与BC的位置关系是POBC。

(2)(1)中的结论POBC成立。理由为:

由折叠可知:APO≌△CPO,∴∠APO=CPO。

OA=OP,∴∠A=APO。∴∠A=CPO。

∵∠A与PCB都为所对的圆周角,∴∠A=PCB。∴∠CPO=PCB。

POBC。

(3)证明:CD为圆O的切线,OCCD。

ADCD,OCAD。∴∠APO=COP。

由折叠可得:AOP=COP,∴∠APO=AOP。

OA=OP,∴∠A=APO。∴∠A=APO=AOP。∴△APO为等边三角形。

∴∠AOP=60°。

OPBC,∴∠OBC=AOP=60°。

OC=OB,∴△BC为等边三角形。∴∠COB=60°。

∴∠POC=180°﹣(AOP+COB)=60°。

OP=OC,∴△POC也为等边三角形。∴∠PCO=60°,PC=OP=OC。

∵∠OCD=90°,∴∠PCD=30°。

在RtPCD中,PD=PC,

PC=OP=AB,PD=AB,即AB=4PD。

解析折叠的性质,圆心角、弧、弦的关系,圆周角定理,平行的判定和性质,切线的性质,全等三角形的性质,等腰三角形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质。

(1)由折叠可得,由AOP=POC ;因为AOC和ABC是弧所对的圆心角和圆周角,根据同弧所对圆周角是圆心角一半的性质,得AOP=ABC;根据同位角相等两直线平行的判定,得PO与BC的位置关系是平行。

(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出APO=CPO,再由OA=OP,利用等边对等角得到A=APO,等量代换可得出A=CPO,又根据同弧所对的圆周角相等得到A=PCB,再等量代换可得出COP=ACB,利用内错角相等两直线平行,可得出PO与BC平行。

(3)由CD为圆O的切线,利用切线的性质得到OCCD,又ADCD,利用平面内垂直于同一条直线的两直线平行得到OCAD,根据两直线平行内错角相等得到APO=COP,再利用折叠的性质得到AOP=COP,等量代换可得出APO=AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出AOP三内角相等,确定出AOP为等边三角形,根据等边三角形的内角为60°得到

AOP=60°,由OPBC,利用两直线平行同位角相等可得出OBC=AOP=60°,再由OB=OC,得到OBC为等边三角形,可得出COB为60°,利用平角的定义得到POC也为60°,再加上OP=OC,可得出POC为等边三角形,得到内角OCP=60°,可求出PCD=30°,在RtPCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC=圆的半径OP=直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网