题目内容
【题目】已知矩形 ABCD 的一条边 AD=8,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处.
(1)求证:△OCP∽△PDA;
(2)若△OCP 与△PDA 的面积比为 1:4,求边 AB 的长;
【答案】(1)见解析;(2)边AB的长为10.
【解析】
(1)只需证明两对对应角分别相等即可证到两个三角形相似;
(2)根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
(1)∵四边形ABCD是矩形,
∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
(2)∵△OCP与△PDA的面积比为1:4,
∴====.
∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,
∴CP=4,BC=8.
设OP=x,则OB=x,CO=8x.
在Rt△PCO中,
∵∠C=90°,CP=4,OP=x,CO=8x,
∴x2=(8x)2+42.
解得:x=5.
∴AB=AP=2OP=10.
∴边AB的长为10.
练习册系列答案
相关题目