题目内容
【题目】已知:如图,在△ABC中,AB=AC,∠A=36°.
(1)尺规作图:作AB的垂直平分线MN交AC于点D,连接BD;(保留作图痕迹,不写作法)
(2)求∠DBC的度数。
【答案】(1)答案见解析;(2)36°
【解析】
(1)分别以A、B点为圆心,以大于AB的长为半径作弧,两弧相交于M,N两点;作直线MN,即MN为线段AB的垂直平分线;
(2)由AB的垂直平分线MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由∠A=36°,根据等边对等角的性质,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得∠DBC的度数.
解:(1)如图:
(2)解:∵AB的垂直平分线MN交AC于D,
∴AD=BD,
∵∠A=36°,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=(180°-∠A)=72°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°.
练习册系列答案
相关题目