题目内容
【题目】如图,点 O 为直线 AB 上一点,过点 O 作射线 OC,使∠BOC=135°,将一个含 45°角的直角三角尺的一个顶点放在点 O 处,斜边 OM 与直线 AB 重合,另外两条直角边都在直线 AB 的下方.
(1)将图 1 中的三角尺绕着点 O 逆时针旋转 90°,如图 2 所示,此时∠BOM= 度(答案直接填写在答题卡的横线上);在图 2 中,OM 是否平分∠CON ? 请说明理由;
(2)紧接着将图 2 中的三角板绕点 O 逆时针继续旋转到图 3 的位置所示,使得 ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;
(3)将图 1 中的三角板绕点 O 按每秒 5°的速度沿逆时针方向旋转一周,在旋转的过程中, 第 t 秒时,直线 ON 恰好平分锐角∠AOC,请你直接写出t 的值为多少.
【答案】(1)∠BOM=90°;M 是否平分∠CON,理由见解析;(2)∠AOM=∠CON,理由见解析;(3)4.5秒或40.5秒
【解析】
(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;
(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;
(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t的值.
解:(1)如图2,由旋转的性质可知∠BOM=90°,
OM平分∠CON.理由如下:
∵∠BOC=135°,
∴∠MOC=135°-90°=45°,
而∠MON=45°,
∴∠MOC=∠MON;
(2)∠AOM=∠CON.
理由如下:如图3,
∵∠MON=45°,
∴∠AOM=45°-∠AON,
∵∠AOC=45°,
∴∠NOC=45°-∠AON,
∴∠AOM=∠CON;
(3)t=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).
故答案为90°;4.5秒或40.5秒.