题目内容
【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.
(1)若点A的坐标是(﹣4,4).
①求b,c的值;
②试判断四边形AOBD的形状,并说明理由;
(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.
【答案】
(1)
解:①∵AC∥x轴,A点坐标为(﹣4,4).
∴点C的坐标是(0,4)
把A、C两点的坐标代入y=﹣x2+bx+c得,
,
解得 ;
②四边形AOBD是平行四边形;
理由如下:
由①得抛物线的解析式为y=﹣x2﹣4x+4,
∴顶点D的坐标为(﹣2,8),
过D点作DE⊥AB于点E,
则DE=OC=4,AE=2,
∵AC=4,
∴BC= AC=2,
∴AE=BC.
∵AC∥x轴,
∴∠AED=∠BCO=90°,
∴△AED≌△BCO,
∴AD=BO.∠DAE=∠OBC,
∴AD∥BO,
∴四边形AOBD是平行四边形.
(2)
解:存在,点A的坐标可以是(﹣2 ,2)
要使四边形AOBD是矩形;
则需∠AOB=∠BCO=90°,
∵∠ABO=∠OBC,
∴△ABO∽△OBC,
∴ ,
又∵AB=AC+BC=3BC,
∴OB= BC,
∴在Rt△OBC中,根据勾股定理可得:OC= BC,AC= OC,
∵C点是抛物线与y轴交点,
∴OC=c,
∴A点坐标为(﹣ c,c),
∴顶点横坐标 =﹣ c,b=﹣ c,
顶点D纵坐标是点A纵坐标的2倍,为2c,
顶点D的坐标为(﹣ c,2c)
∵将D点代入可得2c=﹣(﹣ c)2+ c c+c,
解得:c=2或者0,
当c为0时四边形AOBD不是矩形,舍去,故c=2;
∴A点坐标为(﹣2 ,2).
【解析】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;
②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即 ,再根据勾股定理可得OC= BC,AC= OC,可求得横坐标为﹣ c,纵坐标为c.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.