题目内容

【题目】如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点 D 的铅直高度(即 垂线段 DB 的长度),小亮在点 D 处立上一竹竿 CD,并保证 CDABCDAD,然后在竿顶 C 处垂下一根细绳(细绳末端挂一重锤,以使细绳与水平线垂直),细绳与斜坡 AD 交于点E,此时他测得 CE=8 m,AE=6 m,求 BD 的长度.

【答案】见解析

【解析】

延长CEABF,根据等角的余角相等求出∠A=C,再利用角角边证明ABDCDE全等,根据全等三角形对应边相等可得DB=DE.

延长 CE AB 于点 F.

∵∠A1=90°,C2=90°,1=2,

∴∠A=C.

ABD CDE 中,

∴△ABD≌△CDE(AAS).

AD=CE=8 m.

BD=DE=ADAE=2 m.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网