题目内容

【题目】如图,在ABC中,AB=ACB=30°DBC上一点,且∠DAB=45°

(1) 求∠DAC的度数.

(2) 求证:ACD是等腰三角形.

【答案】(1) 75°;(2)见解析

【解析】试题分析:(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC-∠DAB=120°-45°;

(2)根据三角形的内角和定理,利用等量代换得到∠DAC=∠ADC,然后根据等边对等角可证.

试题解析:(1)∵在△ABC中,AB=AC,∠B=30°,∴∠C=∠B=30°,∴∠BAC=180°﹣∠B﹣∠C=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;

(2)∵∠DAC=75°,∠C=30°,∴∠ADC=180°﹣∠C﹣∠DAC=75°,∴∠DAC=∠ADC,

∴AC=CD,∴△ACD是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网