题目内容
【题目】如图,在四边形ABCD中,点E、F是BC、CD的中点,且AE⊥BC,AF⊥CD.
(1)求证:AB=AD.
(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.
【答案】(1)见解析;(2)∠EAF=∠BAE+∠DAF,证明见解析.
【解析】
(1)证明:连接AC,
∵点E是BC的中点,AE⊥BC,
∴AB=AC,
∵点F是CD的中点,AF⊥CD,
∴AD=AC,
∴AB=AD;
(2)∠EAF=∠BAE+∠DAF.
证明:∵由(1)知AB=AC,
即△ABC为等腰三角形.
∵AE⊥BC,(已知),
∴∠BAE=∠EAC(等腰三角形的三线合一).
同理,∠CAF=∠DAF.
∴∠EAF=∠EAC+∠FAC=∠BAE+∠DAF.
练习册系列答案
相关题目
【题目】商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,请问商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.