题目内容
【题目】如图,在四边形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分别是 BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()
A.30°B.40°C.50°D.70°
【答案】B
【解析】
根据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=70°,进而得出∠EAA′+∠A″AF=70°,即可得出答案.
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,
∵∠C=70°,∠B=∠D=90°,
∴∠DAB=110°,
∴∠HAA′=70°,
∴∠AA′E+∠A″=∠HAA′=70°,
∵∠EA′A=∠EAA′,∠FAD=∠A″,
∴∠EAA′+∠A″AF=70°,
∴∠EAF=110°-70°=40°,
故选B.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
请估算口袋中白球约是( )只.
A. 8 B. 9 C. 12 D. 13