题目内容
【题目】三角形ABC中,AB=5, ,BC边上的高AD=4,BC=__________
【答案】7或1
【解析】
分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-BD.
解:(1)如图
AB=5,,BC边上的高AD=4,
在Rt△ABD中AB=5,AD=4,由勾股定理得
BD2=AB2-AD2,
∴BD=3,
在Rt△ACD中,AD=4,由勾股定理得
CD2=AC2-AD2,
∴CD=3,
∴BC的长为BD+DC=7;
(2)钝角△ABC中,
AB=5,,BC边上高AD=4,
在Rt△ABD中AB=5,AD=4,由勾股定理得
BD2=AB2-AD2=132-122=25,
∴BD=4,
在Rt△ACD中,AD=4,由勾股定理得
CD2=AC2-AD2,
∴CD=3,
∴BC的长为DC-BD=1.
故答案为7或1.
练习册系列答案
相关题目
【题目】行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
刹车距离/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?