题目内容
【题目】如图,在半⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AC2=CQCB,其中结论正确的是____.
【答案】②③④
【解析】
点C是弧AD的中点,可得,即可得∠BAD≠∠ABC,选项①错误;连接BD,由GD为圆O的切线,根据弦切角定理可得∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE⊥AB,得到∠AFP为直角,再由一对公共角,得到△APF与△ABD相似,根据相似三角形的对应角相等可得出∠APF=∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB⊥CE,利用垂径定理得到A为弧CE的中点,得到两条弧相等,再由C为弧AD的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到△ACQ与△ABC相似,根据相似得比例得到AC2=CQCB,
∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,
∴弧AC=弧AD≠弧BD,
∴∠BAD≠∠ABC,选项①错误;
连接BD,如图所示:
∵GD为圆O的切线,
∴∠GDP=∠ABD,
又AB为圆O的直径,∴∠ADB=90°,
∵CE⊥AB,∴∠AFP=90°,
∴∠ADB=∠AFP,又∠PAF=∠BAD,
∴△APF∽△ABD,
∴∠ABD=∠APF,又∠APF=∠GPD,
∴∠GDP=∠GPD,
∴GP=GD,选项②正确;
∵直径AB⊥CE,
∴A为弧CE的中点,即弧AE=弧AC,
又C为弧AD的中点,
∴弧AC=弧CD,
∴弧AE=弧CD,
∴∠CAP=∠ACP,
∴AP=CP,
又AB为圆O的直径,∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,
∴P为Rt△ACQ的外心,选项③正确;
连接CD,如图所示:
∵弧AC=弧CD,
∴∠B=∠CAD,
又∵∠ACQ=∠BCA,
∴△ACQ∽△BCA,
∴,即AC2=CQCB,选项④正确,
综上可知则正确的选项序号有②③④,
故答案为:②③④.