题目内容
【题目】如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.
(1)发现:在图1中, =;
(2)应用:如图2,将△ADE绕点A旋转,请求出 的值;
(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出 的值.
【答案】
(1)
(2)
解:如图2中,连接AM、AN.
∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,
∴AM⊥BC,AN⊥DE,
∴ =sin60°, =sin60°,
∴ = ,
∵∠MAB=∠DAN=30°,
∴∠BAD=∠MAN,
∴△BAD∽△MAN,
∴ = =sin60°=
(3)
解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O.
∵AB=AC,AD=AE,BM=CM,DN=NE,
∴AM⊥BC,AN⊥DE,
∵∠BAC=∠DAE,
∴∠ABC=∠ADE,
∴sin∠ABM=sin∠ADN,
∴ = ,
∵∠BAM= BAC,∠DAN= ∠DAE,
∴∠BAM=∠DAN,
∴∠BAD=∠MAN.
∴△BAD∽△MAN,
∴ = =sin∠ABC,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵BD⊥CE,
∴∠BHC=90°,
∴∠ACE+∠COH=90°,∵∠AOB=∠COH,
∴∠ABD+∠AOB=90°,
∴∠BAO=90°,
∵AB=AC,
∴∠ABC=45°,
∴ =sin45°=
【解析】解:(1)如图1中,作DH⊥BC于H,连接AM.
∵AB=AC,BM=CM,
∴AM⊥BC,
∵△ADE时等边三角形,
∴∠ADE=60°=∠B,
∴DE∥BC,
∵AM⊥BC,
∴AM⊥DE,
∴AM平分线段DE,
∵DN=NE,
∴A、N、M共线,
∴∠NMH=∠MND=∠DHM=90°,
∴四边形MNDH时矩形,
∴MN=DH,
∴ = =sin60°= ,
所以答案是 .
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.