题目内容
【题目】如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
(1)AD的长;
(2)△ABC的面积.
【答案】(1)AD=3;(2)S△ABC=9+3.
【解析】试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
∵AC2=AD2+CD2,∴62=2AD2,∴AD=3.
(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
练习册系列答案
相关题目