题目内容

【题目】如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2 , 则y关于x的函数的图象大致为( )

A.
B.
C.
D.

【答案】C
【解析】解:∵正△ABC的边长为3cm,
∴∠A=∠B=∠C=60°,AC=3cm.
①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);
根据余弦定理知cosA=
=
解得,y=x2﹣3x+9(0≤x≤3);
该函数图象是开口向上的抛物线;
解法二:过C作CD⊥AB,则AD=1.5cm,CD= cm,
点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,
∴y=PC2=( 2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)
该函数图象是开口向上的抛物线;
②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);
则y=(6﹣x)2=(x﹣6)2(3<x≤6),
∴该函数的图象是在3<x≤6上的抛物线;
故选:C.

【考点精析】根据题目的已知条件,利用函数的图象的相关知识可以得到问题的答案,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网