题目内容
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗
圃. 问矩形苗圃的一边长为多少时面积最大,最大面积是多少?
圃. 问矩形苗圃的一边长为多少时面积最大,最大面积是多少?
9m; 81m2。
(1)篱笆只有两边,且其和为18,设一边为x,则另一边为(18-x),根据公式表示面积;据实际意义,0<x<18;
(2)根据函数性质求最值,可用公式法或配方法.
解:(1)由已知,矩形的另一边长为(18-x)m
则y=x(18-x)=-x2+18x
自变量x的取值范围是0<x<18.
(2)∵y=-x2+18x=-(x-9)2+81
∴当x=9时(0<9<18),苗圃的面积最大,最大面积是81m2.
又解:∵a=-1<0,y有最大值,
练习册系列答案
相关题目