题目内容

如图,在等腰梯形ABCD中,AB∥CD, 对角线AC⊥BC,∠B=60º,BC=2cm,则梯形ABCD的面积为( )   
A.3 cmB.6 cmC.6cmD.12 cm
A
过点C作CE⊥AB,

∵AC⊥BC,∠B=60°,
∴∠CAB=30°,
∵BC=2cm,
∴AB=4cm,AC=2cm,
∴CE=cm,
∵梯形ABCD是等腰梯形,CD∥AB,
∴∠B=∠DAB=60°,∠CAB=∠DCA=30°,
∵∠CAB=30°,
∴∠DAC=∠DCA=30°,
∴CD=AD=BC=2cm,
∴梯形ABCD的面积=1/2
(AB+CD)×CE=1/2(4+2)×
=3cm2
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网