题目内容
【题目】如图①,点O为直线MN上一点,过点O作直线OC,使∠NOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OA在射线OM上,另一边OB在直线AB的下方,其中∠OBA=30°
(1)将图②中的三角尺沿直线OC翻折至△A′B′O,求∠A′ON的度数;
(2)将图①中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转,旋转角为α(0<α<360°),在旋转的过程中,在第几秒时,直线OA恰好平分锐角∠NOC;
(3)将图①中的三角尺绕点O顺时针旋转,当点A点B均在直线MN上方时(如图③所示),请探究∠MOB与∠AOC之间的数量关系,请直接写出结论,不必写出理由.
【答案】(1)∠A′ON=60°;(2)第15或秒时,直线OA恰好平分锐角∠NOC;(3)①当OB,OA在OC的两旁时,∠MOB-∠AOC=30°,②当OB,OA在OC的同侧时,∠MOB+∠AOC=120°-90°=30°.
【解析】
(1)如图②中,延长CO到C′.利用翻折不变性求出∠A′O′C′即可解决问题;
(2)设t秒时,直线OA恰好平分锐角∠NOC.构建方程即可解决问题;
(3)分两种情形分别求解即可解决问题;
(1)如图②中,延长CO到C′.
∵三角尺沿直线OC翻折至△A′B′O,
∴∠A′OC′=∠AOC′=∠CON=60°,
∴∠A′ON=180°-60°-60°=60°.
(2)设t秒时,直线OA恰好平分锐角∠NOC.
由题意10t=150或10t=330,
解得t=15或33s,
答:第15或秒时,直线OA恰好平分锐角∠NOC;
(3)①当OB,OA在OC的两旁时,∵∠AOB=90°,
∴120°-∠MOB+∠AOC=90°,
∴∠MOB-∠AOC=30°.
②当OB,OA在OC的同侧时,∠MOB+∠AOC=120°-90°=30°.