题目内容
【题目】如图,正方形ABCD中,点E是BC上一点,直线AE交BD于点M,交DC的延长线于点F,G是EF的中点,连结CG.求证: ①△ABM≌△CBM;
②CG⊥CM.
【答案】证明:①∵四边形ABCD是正方形, ∴AB=CB,∠ABM=∠CBM,
在△ABM和△CBM中,
,
∴△ABM≌△CBM(SAS),
②∵△ABM≌△CBM,
∴∠BAM=∠BCM,
∵∠ECF=90°,G是EF的中点,
∴GC=GF,
∴∠GCF=∠F,
又∵AB∥DF,
∴∠BAM=∠F,
∴∠BCM=∠GCF,
∴∠BCM+∠GCE=∠GCF+∠GCE=90°,
∴GC⊥CM.
【解析】①利用正方形的性质得出AB=CB,∠ABM=∠CBM,进而利用SAS得出答案;②直接利用全等三角形的性质得出∠BAM=∠BCM,进而得出∠BAM=∠F,∠BCM=∠GCF进而求出答案.
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.
练习册系列答案
相关题目