题目内容

【题目】如图,菱形ABCD中,E是对角线AC上一点.
(1)求证:△ABE≌△ADE;
(2)若AB=AE,∠BAE=36°,求∠CDE的度数.

【答案】
(1)证明:∵四边形ABCD是菱形,

∴AB=AD,∠CAB=∠CAD,

在△ABE和△ADE中,

∴△ABE≌△ADE(SAS)


(2)解:∵AB=AE,∠BAE=36°,

∴∠AEB=∠ABE=

∵△ABE≌△ADE,

∴∠AED=∠AEB=72°,

∵四边形ABCD是菱形,

∴AB∥CD,

∴∠DCA=∠BAE=36°,

∴∠CDE=∠AED﹣∠DCA=72°﹣36°=36°.


【解析】(1)由菱形的性质可得到AD=AB,∠CAB=∠CAD,结合公共边可证得结论;(2)由等腰三角形的性质可求得∠AEB=∠ABE,再结合(1)的结论,可求得∠AED,结合菱形的性质可求出∠CDE的大小.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网