题目内容
【题目】如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求CF的长
【答案】(1)见详解;(2) .
【解析】
(1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;
(2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.
(1)证明:
∵EF⊥BE,
∴∠EFB=90°,
∴∠DEF+∠AEB=90°.
∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEB+∠ABE=90°,
∴∠DEF=∠ABE,
∴△ABE∽△DEF.
(2)解:∵AD=12,AE=8,
∴DE=4.
∵△ABE∽△DEF,
∴ = ,
∴DF= ,
∴CF=CD-DF=6-=.
练习册系列答案
相关题目
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])