题目内容

【题目】如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.

(1)∠BAO的度数.(直接写出结果)

(2)当点PAB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图),求点P的运动速度.

(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.

(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.

【答案】(1)∠BAO=60°; (2)P的运动速度为2个单位/秒;(3)P();(4)t=时,PO=PQ.

【解析】

(1)利用∠BAO的正切值,求出∠BAO的度数即可;
(2)利用图②中的函数图象,求得点P的运动时间与路程解决即可;
(3)利用特殊角的三角函数,三角形的面积以及配方法解决问题;
(4)分两种情况进行列方程解决问题.

(1)如图,

过点BBEOAE,则OE=5,BE=5,OA=10,

AE=5,RtABE中,tanBAO=

∴∠BAO=60°;

(2)由图形可知,当点P运动了5秒时,它到达点B,此时AB=10,因此点P的运动速度为10÷5=2个单位/秒,

P的运动速度为2个单位/秒;

(3)P(10﹣t, t)(0≤t≤5),

S=(2t+2)(10﹣t),

=﹣(t﹣2+

∴当t=时,S有最大值为

此时P();

(4)PAB上时,根据P点纵坐标得出:

解得:t=

PBC上时,

此方程无解,故t不存在,

综上所知当t=时,PO=PQ.

练习册系列答案
相关题目

【题目】请阅读下列材料:

提出问题:现有2个边长是1的小正方形,请你把它们分割后,(图形不得重叠,不得遗漏),组成一个大的正方形,解决这个问题的方法不唯一,但有一个解题的思路是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得,由此可知新正方形的边长等于原来正方形的对角线的长.

1)解决问题:现有5个边长为1的正方形,排列形式如图3,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

小东同学的做法是:设新正方形的边长为).依题意,割补前后图形的面积相等,有 ,解得 .由此可知新正方形的边长等于两个正方形组成的矩形对角线的长.请你在图3中画出分割线,在图4中拼出新的正方形.

2)模仿演练:

现有10个边长为1的正方形,排列形式如图5,请把它们分割后拼接成一个新的正方形.要求:在图5中画出分割线,并在图6中的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.

3)应用创新:

7是一个大的矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图7中画出分割线,在图8中要求画出三块图形组装成大正方形的示意图).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网