题目内容
【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.
(1)求证:BD=EC;
(2)若AC=2, , 求菱形ABCD的面积.
【答案】(1)证明见解析;
(2)菱形的面积为
【解析】试题分析: (1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;
(2)欲求菱形ABCD的面积,只需求得AC、BD的长度即可.利用平行四边形BECD的性质推知∠E=∠OBA,所以通过解直角△OBA和勾股定理易求OB的长度.则利用菱形ABCD的对角线互相平分易求BD的长度.
试题解析:(1)∵四边形ABCD为菱形
∴AB∥CD, AB=CD
∵BE=AB
∴BE∥CD且BE=CD
∴四边形BECD为平行四边形
∴DB=CE
(2)∵四边形BECD为平行四边形
∴DB∥CE
∴∠E=∠OBA
∴
∵四边形ABCD为菱形
∴∠AOB=90°,
∴
练习册系列答案
相关题目