题目内容

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

【答案】(1)A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装17套.

【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.

试题解析:

1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.

根据题意得: =2×

解得:x=7.5

经检验,x=7.5为分式方程的解,

x+2.5=10

答:A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元.

2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,

根据题意得:(13﹣10a+9.5﹣7.5)(2a+4)>120

解得:a16

a为正整数,

a取最小值17

答:最少购进A品牌工具套装17套.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网