题目内容
【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求 的值.
【答案】
(1)证明:∵GE是AB的垂直平分线,
∴GA=GB,
同理:GD=GC,
在△AGD和△BGC中,
,
∴△AGD≌△BGC(SAS),
∴AD=BC;
(2)证明:∵∠AGD=∠BGC,
∴∠AGB=∠DGC,
在△AGB和△DGC中, ,
∴△AGB∽△DGC,
∴ ,
又∵∠AGE=∠DGF,
∴∠AGD=∠EGF,
∴△AGD∽△EGF
(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:
则AH⊥BH,
∵△AGD≌△BGC,
∴∠GAD=∠GBC,
在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,
∴∠AGB=∠AHB=90°,
∴∠AGE= ∠AGB=45°,
∴ ,
又∵△AGD∽△EGF,
∴ = = .
【解析】(1)由GE是AB的垂直平分线,得到GA=GB,同理GD=GC,△AGD≌△BGC(SAS),得到AD=BC;(2)由∠AGD=∠BGC,得到∠AGB=∠DGC,在△AGB和△DGC中,由比值得到△AGB∽△DGC,得到EG:FG=GA:GD,又∠AGE=∠DGF,得到∠AGD=∠EGF,所以△AGD∽△EGF;(3)由△AGD≌△BGC,得到∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,得到∠AGB=∠AHB=90°,∠AGE= ∠AGB=45°,又△AGD∽△EGF,得到.
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.